skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lv, Xinyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polaritons in two-dimensional (2D) materials provide unique opportunities for controlling light at nanoscales. Tailoring these polaritons via gradient polaritonic surfaces with space-variant response can enable versatile light-matter interaction platforms with advanced functionalities. However, experimental progress has been hampered by the optical losses and poor light confinement of conventionally used artificial nanostructures. Here, we demonstrate natural gradient polaritonic surfaces based on superlattices of solitons—localized structural deformations—in a prototypical moiré system, twisted bilayer graphene on boron nitride. We demonstrate on-off switching and continuous modulation of local polariton-soliton interactions, which results from marked modifications of topological and conventional soliton states through variation of local strain direction. Furthermore, we reveal the capability of these structures to spatially modify the near-field profile, phase, and propagation direction of polaritons in record-small footprints, enabling generation and electrical switching of directional polaritons. Our findings open up new avenues toward nanoscale manipulation of light-matter interactions and spatial polariton engineering through gradient moiré superlattices. 
    more » « less
    Free, publicly-accessible full text available December 13, 2025